石英晶体、晶振介绍
0赞






很多人做MCU51单片机得时候,不明白晶体两边为什么要加两个电容,大小一般在15pF~33pF之间,有些特殊的,还需要在晶体上并联一个大电阻,一般老师的解释是提高晶体振荡电路的稳定性,有助于起振,而对于其根本原理没有解释。其实这个电路就是典型的电容三点式振荡电路,Y1是晶体,相当于三点式里面的电感,C1和C2就是电容,5404(类似74HC04)和R1实现一个NPN的三极管,大家可以对照高频书里的三点式电容振荡电路。接下来分析一下这个电路。
5404因为是反相器,也就是说实现了180°移相,那么就需要C1,C2和Y1实现180°移相就可以,恰好,当C1,C2,Y1形成谐振时,能够实现180移相,这个大家可以解方程等,把Y1当作一个电感来做。也可以用电容电感的特性,比如电容电压落后电流90°,电感电压超前电流90°来分析,都是可以的。
当C1增大时,C2端的振幅增强,当C2降低时,振幅也增强。
因为7404的电压反馈是靠C2的,假设C2过大,反馈电压过低,这个也是不稳定,假设C2过小,反馈电压过高,储存能量过少,容易受外界干扰,也会辐射影响外界。C1的作用对C2恰好相反。因为我们布板的时候,假设双面板,比较厚的,那么分布电容的影响不是很大,假设在高密度多层板时,就需要考虑分布电容,尤其是VCO之类的振荡电路,更应该考虑分布电容。

依据不同的应用领域及工作温度需求, 因应了许多不同的石英切割角度种类. 例如AT-, BT-, CT-, DT-, NT, GT…..等不同的切割板片. 不同的切割方向的板片具有不同的弹性常数张量(elastic constant tensor), 不同的压电常数张量(piezoelectric constant tensor)及不同的介电常数张量(dielectric constant tensor). 这些张量在石英组件的设计及应用上展现了不同的振荡及温度特性. (图三)表现了在Z-plat石英结构上,几种不同方向的石英板片切割方式.
(Fig. 7) (a) Metal can type resonator
(b) Ceramic SMD type resonator
(c) Symbol of crystal usnit
(图八) 就是将石英晶体共振子转换成振荡频率附近的Butterworth-Van Dyke (BVD)等效电路. 在这个图中,主要有四个主要参数 : 静态电容-Co, 动态电容-C1, 动态电感-L1及动态电阻-R1.


﹝Fig.8﹞Effective Circuit of Crystal
在技术文献及产品应用上, 石英晶体共振子的共振有三组不同定义及特性的共振频率.
(1) 串联谐振频率及并联谐振频率 ( fs , fp )
(series resonance frequency and parallel resonance frequency)
(2) 谐振频率及反谐振频率 ( fr , fa )
(resonance frequency and anti-resonance frequency)
(3) 最大电导频率及最小电导频率 ( fm , fn )
(maximum admittance frequency minimum admittance frequency).
这三组频率的导纳(admittance)图, 可以从(图九)复数坐标清楚的看到

﹝Fig.9﹞ Complex Admittance of Resonators
串联偕振频率及并联偕振频率, fs and fp ,是分别由电导(real part of the admittance)最大和阻抗(real part of the electric input impedance)最大时的频率.
谐振频率及反谐振频率, fr and fa , 分别是当电导等于零(纯电阻特性)的二个频率. 在这个时候, fr 的阻抗为 1 / Rr 而fa 的阻抗为 1/ Ra.
在评估共振时的等效线路时, 串联谐振频率及并联谐振频率, fs and fp , 是最重要的二个频率参数. 对于串联谐振频率及并联谐振频率( fs and fp )二者的关系, 我们可以用下列公式来表达:

公式中的C1及 L1 分别是(图七)中的动态电容(motional capacitance)及动态电感(motional conductance); Co 是静态电容(shunt capacitance).
(1) 公称频率及容许误差( Nominal Frequency and Tolerance )
在正确的振荡线路匹配下, 从振荡线路输出的频率, 称之为“公称频率( nominal frequency )”. 频率单位一般是以兆赫( megahertz, MHz) 或 仟赫(Kilohertz, KHz)表示.
实际的批量生产及振荡线路应用上, 产品在室温环境(25oC)中都会有一些相对于中心频率的频率散布误差. 这类型的频率容许误差的最大散布值,一般是以ppm ( parts per million )或% ( percent ) 来表示.
(2) 基本波振荡及倍频振荡模态( Fundamental and Overtone Vibrations Mode)
在AT切割角度的石英晶体共振子主要是以厚度剪切振荡模态存在. 石英晶体在共振时, 除了基本波振荡之外, 高阶的倍频共振也与基本波振荡同时存在于石英晶体的电极区域之间. 但是, 由于压电材料的电极是电气相位相反的振动环境, 所以, 祇有奇数倍(odd number)的高频倍频可以发生, 偶数倍(even number)的倍频共振在石英晶体共振子是不会存在的(图十).

(Fig.10) Only odd number harmonic vibrations can be excited in crystal resonator
(3) 负载电容 ( Load Capacitance, CL )
振荡线路上的”负载电容(load capacitance)”定义为:从石英晶体共振子的两个端子看向振荡线路所遭遇到的所有电容值. 负载电容在线路上可以与石英晶体共振子以并联(parallel)或以串联(series)的方示连接. 以并联方式连接的振荡线路中, 负载电容(CL)的大小会影响公称频率的特性.
这种负载电容并联线路的共振频率以 fL 表示 :

(4) 频率对温度稳定性( Frequency-Temperature Stability )
石英频率因温度变化而改变, 这是因起于石英材料在各个坐标轴向的热膨胀系数不同, 当温度变化时, 各轴向晶格距产生些许变化. 当引用不同的切割角度时, 不同振荡模态的之变化也会不同.
以AT切割角度的厚度剪切振荡模态的设计, 一般是采用摄氏25度作为参考温度点的频率来定义在工作环境温度范围内的频率变动的稳定性. 在定义这项频率对温度稳定性参数的同时, 也应该一同规范出相对应的工作环境温度范围(Operation Temperature Range)
石英频率组件频率对温度稳定性的特性, 亦如同公称频率误差一样, 是以ppm或是以% 为计量单位. 组件的频率温度特性曲线与石英的切割角度, 振荡模态, 表面处理及外型尺寸都有很大的关系. 除此之外, 振荡线路上的负载电容(CL), 驱动功率(drive level)的特性, 也会影响到振荡线路输出频率对温度变化的稳定性.
(5) 等效串联阻抗 ( Equivalent Series Resistance , ESR)
当石英晶体串联振荡在fs时, C1及L1是相反相位而互相抵消, 整个共振子的动态支臂(motional arm) 的导纳(admittance)是接近最小阻抗值R1. 这时候整个石英晶体共振子的表现仅是一个电阻性的组件. 电阻值R1是整个组件的机械性能量损耗. 其中包含了石英材料, 接着材料及封装材料上所有的能量损耗.
(6) 动态电容( Motional Capacitance C1 ) 及动态电感( Motional Inductance L1 )
在公式一中, ,动态电容C1及动态电感L1与串联偕振频率, fs ,是相互关联的.
在实际的量测系统中, 我们祇能量测到动态电容C1及串联协振频率fs . 动态电感L1是由公式(4)计算得到.

(7) 静态电容( Static Capacitance or Shunt Capacitance, Co )
静态电容,Co, 主要来自由以石英芯片为介电材料与两个电极所形成的电容为主; 另外一小部份的静态电容来自连接石英芯片与接线的导电接着材料之间的电容和封装外壳的电容.
静态电容是在远低于振荡频率的范围量测出来的, 以避免在受到振荡频率附近的动态电容影响. 公式(5) 是静态电容的数学表示式.

在公式(5)中, A 代表电极的面积; d 代表石英芯片的厚度; ε 是石英芯片的相对应介电值; Cm+p 是其它由材料产生的电容值
(8) 驱动功率( Drive Level )
石英晶体的驱动功率是指石英晶体共振子的消耗功率. 一般是以微瓦(microwatt)表示. 振荡线路的设计上必须提供适当的功率让石英晶体共振子开始起振并维持振荡. 石英晶体的振荡是属于物理上的高频机械振动, 振荡时的电气阻抗值约在10~100奥姆以下( 依频率范围及尺寸大小有差异). 振荡线路若提供过高的驱动功率, 会使石英晶体的非线性特性变化及石英/电极/接着材料的接口恶化, 进而造成振荡频率FL及等效阻抗R1的过度变化. 石英晶体在长时期的过高驱动功率下工作, 会有不稳定的现象. 随着各类应用面的低消耗功率需求及产品小形化趋势, 加上近几年石英产品的技术大幅提升, 石英晶体共振子的电气阻抗值整体都下降而且稳定. 振荡线路的设计不需要,也不应该提供过高的驱动能量在石英晶体共振子上面. 对于绝大部份的应用面而言, 振荡线路提供 10 ~ 100 微瓦( microwatt)的最大功率(视石英共振子的尺寸及频率而定)给石英共振子已足够了.
(9) 电气品质因子( Quality Factor, Q )
对于石英晶体共振子, 电气质量因子Q是很重要的一个特性. 电气质量因子可以用下列公式(6)表示

石英晶体的共振子的质量因子可以达到数佰万以上.
(10) 牵引率( Pullability ) 及 敏感度( Trim Sensitivity )
石英晶体共振子应用在并联振荡线路上, 振荡频率与负载电容CL有很大的关系. 这在前面的公式(3)就可以看到. (图十一) 是以并联振荡线路上FL频率对负载电容CL的变化曲线示意图.
频率的“牵引率”指的是负载电容CL1的频率FL1到负载电容CL2的频率FL2的频率变化. 在(图十一)中可以是FL1(CL=24pF)与FL2(CL=10pF)的频率变化值. 在这个例子中的频率牵引率是 220 ppm. 若我们将CL1与CL2的负载电容值趋近极小化(曲线作数学上的微分), 就会得到曲线的切线值. 这个切线值就是用某一个负载电容的敏感度( trim sensitivity ).
在(图十一)中, CL=24 pF 时的频率敏感度是10 ppm/pF, 及CL=10 pF时的频率敏感度是20 ppm/pF. 在并联线路中, 负载电容越小, 频率对负载电容变化的敏感度越高. 相反的, 负载电容越大, 频率对负载电容变化的敏感度越低. 这就是石英晶体共振子用于VCXO线路上时, 线路设计上会选用较小负载电容. 反之, 在要求较准确的频率信号时, 线路设计上会选用较高的负载电容.

(Fig. 11) Frequency variation vs. load capacitance
(11) 老化( AGING )
“ 老化” 顾名思意就是指在某一段特定时间范围内, 石英晶体共振子随时间的频率变化, 以百万分之一 ( parts per million, ppm ) 为表示的单位. 老化在频率与时间上的特性曲线, 一般是呈现指数(exponential)型态的变化. 频率老化变动最大的期间是在石英频率组件制成后的第一个月. 之后, 频率的变化就随时间逐渐减少. 频率的老化特性有好几个主要的因素影响. 比如说, 封装的方法, 材料的种类, 制程温度, 制程管控, 热处理过程及产品的尺寸和频率高低. 在规格上大多都要定义出短期(1~3个月) 或长期(1~10年)的频率老化需求.
(12) 储存温度范围( STORAGE TEMPERATURE RANGE )
除了在前面的工作环境温度范围之外, 另一项与温度有关的特性是”储存温度范围(Storage Temperature Range)”. 这个参数指的是产品在静态状况下可以储存的最高与最低温度范围. 在这个温度范围内, 产品必需保证在长时期的储存后, 还是可以在工作温度范围内正常的工作并符合规格. 这项特性与石英晶体共振子的组件设计及制程设计有很大关系, 要小心的定义.
(13) 负性阻抗(Negative Resistance , - R )
负性阻抗是指从石英晶体共振子的二个端子往振荡线路看过去, 所遭遇到振荡线路在振荡频率时的阻抗特性值. 振荡线路上必需提供足够的放大增益值来补偿石英晶体共振子在共振时的机械能损失. 负性阻抗并不是石英振荡子的产品参数, 却是振荡线路的一项重要特性参数. 从共振子的角度而言, 就是在振荡线路的”负性阻抗”.
九.石英晶体发振器( CRYSTAL OSCILLATORS )







