旋转变压器的原理
0赞在上一节中,我用了锁相放大器来获取了不平衡量的参数,也就是振动的参数。然而这种方式得到的经常是不精确的。但是也能用。
这不老板交给了个新的任务,要让电机来停止在不平衡最大的地方来做相位矫正。如何,让电机停止在相对的角度上呢?这个问题就有点难度了,查阅了很多资料,发现用旋转变压器可以实现这个。而ADI的RDC很好的解决了这个问题。发现这个问题,也很有人找,那么我就来依据我找的资料讲讲悬变的原理把。
旋转变压器是目前国内的专业名称,简称“旋变”。俄文里称作“ВращающийсяТрансформатор” ,词义就是“旋转变压器”。英文名字叫“resolver”,根据词义,有人把它称作为“解算器”或“分解器”。
作为角度位置传感元件,常用的有这样几种:光学编码器、磁性编码器和旋转变压器。由于制作和精度的缘故,磁性编码器没有其他两种普及。光学编码器的输出信号是脉冲,由于是天然的数字量,数据处理比较方便,因而得到了很好的应用。早期的旋转变压器,由于信号处理电路比较复杂,价格比较贵的原因,应用受到了限制。因为旋转变压器具有无可比拟的可靠性,以及具有足够高的精度,在许多场合有着不可代替的地位,特别是在军事以及航天、航空、航海等方面。
信号处理技术的进步,旋转变压器的信号处理电路变得简单、可靠,价格也大大下降。而且,又出现了软件解码的信号处理,使得信号处理问题变得更加灵活、方便。这样,旋转变压器的应用得到了更大的发展,其优点得到了更大的体现。和光学编码器相比,旋转变压器有这样几点明显的优点:①无可比拟的可靠性,非常好的抗恶劣环境条件的能力;②可以运行在更高的转速下。(在输出12 bit的信号下,允许电动机的转速可达60,000rpm。而光学编码器,由于光电器件的频响一般在200kHz以下,在12 bit时,速度只能达到3,000rpm);③方便的绝对值信号数据输出。
下图是一个比较典型的角度位置伺服控制系统。XF称作旋变发送机,XB称作旋变变压器。旋变发送机发送一个与机械转角有关的、作一定函数关系变化的电气信号;旋变变压器接受这个信号、并产生和输出一个与双方机械转角之差有关的电气信号。伺服放大器接受选变压器的输出信号,作为伺服电动机的控制信号。经放大,驱动伺服电动机旋转,并带动接受方旋转变压器转轴及其它相连的机构,直至达到和发送机方一致的角位置。
旋变发送机的初级,一般在转子上设有正交的两相绕组,其中一相作为励磁绕组,输入单相交流电压;另一相短接,以抵消交轴磁通,改善精度。次级也是正交的两相绕组。旋变变压器的初级一般在定子上,由正交的两相绕组组成;次级为单项绕组,没有正交绕组。

作为旋变发送机它的励磁绕组是由单相电压供电,电压可以写为式(1)形式:
(1)
其中,U1m—励磁电压的幅值,ω—励磁电压的角频率。励磁绕组的励磁电流产生的交变磁通,在次级输出绕组中感生出电动势。当转子转动时,由于励磁绕组和次级输出绕组的相对位置发生变化,因而次级输出绕组感生的电动势也发生变化。又由于次级输出的两相绕组在空间成正交的90°电角度,因而两相输出电压如式(2)所示:
(2)
其中,U2Fs—正弦相的输出电压,U2Fc—余弦相的输出电压,U2Fm—次级输出电压的幅值;αF—励磁方和次级输出方电压之间的相位角,θF—发送机转子的转角。可以看出,励磁方和输出方的电压是同频率的,但存在着相位差。正弦相和余弦相在电的时间相位上是同相的,但幅值彼此随转角分别作正弦和余弦函数变化。

旋变发送机两相输出电压和转角的关系曲线
旋变发送机的两相次级输出绕组,和旋变变压器的原方两相励磁绕组分别相联。这样,式(2)所表示的两相电压,也就成了旋变变压器的励磁电压,并在旋变变压器中产生磁通φB。旋转变压器的单相绕组作为输出绕组,旋变发送机次级绕组和旋变变压器初级绕组中流过的电流为
(3)
由这两个电流建立的空间和成磁动势为
(4)
式(4)表示在旋变发送机中,合成磁动势的轴线总是位于θF角上,亦即和励磁绕组轴线一致的位置上,和转子一起转动。可以知道,在旋变变压器中,合成磁动势的轴线相应地也是和A相绕组距θF角的位置上。只是由于电流方向相反,其方向也和在旋变发送机中相差180°。若旋变变压器转子转角为θB,则其单相输出绕组轴线和励磁磁场轴线夹角相差Δθ=θF-θB。那么,输出绕组的感应电动势应是:
(5)
将输出绕组在空间移过90°。这样,在协调位置时,输出电动势为零。此时,输出电动势和失调角的关系成为正弦函数:
(6)

旋变变压器输出电动势和失调角的关系曲线
从图中和式(6)可以看出,输出电动势有两个为零的位置,即Δθ=0°和在Δθ=180°。在0°和180°范围内,电动势的时间相位为正,在180°和360°范围内,电动势的时间相位变化了
180°。Δθ=180°的这个点属于不稳定点,因为在这个点上,电动势的梯度为负。当有失调角时,旋变变压器输出绕组电动势不为零,这个电动势控制伺服放大器去驱动伺服电动机,驱使旋变变压器和其它装置转到协调位置。这时,输出绕组的输出为零,伺服电动机停止工作。因此,根据信号幅值大小和正、负方向工作的伺服电动机,总是把旋变变压器的转轴带到稳定工作点Δθ=0°的位置上。
