snifer

[原创]Blackfin嵌入式系统驱动案例

0
阅读(2540)

最近又开始嵌入式设计了,当然嵌入式设计中最不可少的就是驱动的设计,今天就这个问题跟大家一起探讨一下,我通过一个小小的驱动,来说明一个大大的问题。

我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把下面的C代码输入机器,你就会获得一个真正的设备驱动程序。

#define  __NO_VERSION__

#include  <linux/modules.h>

#include  <linux/version.h>

  char kernel_version [] = UTS_RELEASE;

 这一段定义了一些版本信息,虽然用处不是很大,但也必不可少。Johnsonm说所有的驱动程序的开头都要包含<linux/config.h>,一般来讲最好使用。

  由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如open,read,write,close…,注意,不是fopen,fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:

struct file_operations

{

int (*seek) (struct inode * ,struct file *,off_t ,int);
int (*read) (struct inode * ,struct file *,char ,int);
int (*write) (struct inode * ,struct file *,off_t ,int);
int (*readdir) (struct inode * ,struct file *,struct dirent * ,int);
int (*select) (struct inode * ,struct file *,int ,select_table *);
int (*ioctl) (struct inode * ,struct file *,unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *,struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
 

  这个结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。

下面就开始写子程序。

#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;

static int read_test(struct inode *node,struct file *file,char *buf,int count)

{

int left;

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
 

这个函数是为read调用准备的。当调用read时,read_test()被调用,它把用户的缓冲区全部写1。buf 是read调用的一个参数。它是用户进程空间的一个地址。但是在read_test被调用时,系统进入核心态。所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。另外还有很多类似功能的函数。请参考,在向用户空间拷贝数据之前,必须验证buf是否可用。这就用到函数verify_area。

static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count)
{

return count;

}

 

static int open_tibet(struct inode *inode,struct file *file )
{

MOD_INC_USE_COUNT;

return 0;

}

 

static void release_tibet(struct inode *inode,struct file *file )
{

MOD_DEC_USE_COUNT;

}

 

  这几个函数都是空操作。实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。

struct file_operations test_fops = {
NULL,
read_test,
write_test,
NULL,/* test_readdir */
NULL,
NULL,/* test_ioctl */
NULL,/* test_mmap */
open_test,
release_test,

NULL,/* test_fsync */
NULL,/* test_fasync */
/* nothing more,fill with NULLs */
}; 

  设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(modules),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。

int init_module(void)
{
int result;

result = register_chrdev(0,"test",&test_fops);

if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}

if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
 

  在用insmod命令将编译好的模块调入内存时,init_module 函数被调用。在这里,init_module只做了一件事,就是向系统的字符设备表登记了一个字符设备。register_chrdev需要三个参数,参数一是希望获得的设备号,如果是零的话,系统将选择一个没有被占用的设备号返回。参数二是设备文件名,参数三用来登记驱动程序实际执行操作的函数的指针。

洋洋洒洒写了这么多,希望大家能入门,下篇继续哇