stevenelec

TI的DRV8846高度集成步进马达驱动器参考资料

0
阅读(4982)

DRV8846 双通道 H 桥步进电机驱动器
DRV8846 Dual H-Bridge Stepper Motor Driver

TI公司的DRV8846是高度集成的步进马达驱动器,包括两个H桥和微步进分度器,工作电压4-18V,驱动电流高达1A,主要用在打印机,扫描仪,视频安全摄像机和投映仪.本文介绍了DRV8846主要特性,功能框图,应用电路以及评估板主要特性,电路图和材料清单,以及3D打印机控制器(12V)主要特性,电路图和材料清单.


TI的DRV8846高度集成步进马达驱动器参考资料:


Detailed Description

1 Overview

The DRV8846 is an integrated motor driver solution for bipolar stepper motors. The device integrates 2 H-bridges that use NMOS low-side drivers and PMOS high-side drivers, current sense regulation circuitry, and a microstepping indexer. 

2 Functional Block Diagram

fbd_LLSEK2.gif

3 Feature Description

3.1 PWM Motor Drivers

DRV8846 contains two identical H-bridge motor drivers with current-control PWM circuitry. Figure 6 shows a block diagram of the circuitry.

PWM_motor_LLSEK2.gifFigure 6. PWM Motor Driver Circuitry

3.2 Micro-Stepping Indexer

Table 2. Step Mode Settings

M1M0STEP MODE
00Full step (2-phase excitation), rising-edge only
0Z1/2 step (1-2 phase excitation), rising-edge only
011/4 step (W1-2 phase excitation), rising-edge only
Z08 microsteps/step, rising-edge only
ZZ8 microsteps/step, rising and falling edges
Z116 microsteps/step, rising-edge only
1016 microsteps/step, rising and falling edges
1Z32 microsteps/step, rising-edge only
1132 microsteps/step, rising and falling edges

Table 3 shows the relative current and step directions for different step mode settings. At each rising edge of the STEP input, the indexer travels to the next state in the table. The direction is shown with the DIR pin high; if the DIR pin is low, the sequence is reversed. Positive current is defined as xOUT1 = positive with respect to xOUT2.

Table 3. Relative Current and Step Directions

1/32 STEP1/16 STEP1/8 STEP1/4 STEP1/2 STEPFULL STEP 70%WINDING CURRENT AWINDING CURRENT BELECTRICAL ANGLE
11111
100%0%0
2




100%5%3
32



100%10%6
4




99%15%8
532


98%20%11
6




97%24%14
74



96%29%17
8




94%34%20
9532

92%38%23
10




90%43%25
116



88%47%28
12




86%51%31
1374


83%56%34
14




80%60%37
158



77%63%39
16




74%67%42
17(1)9(1)5(1)3(1)2(1)1(1)71%71%45
18




67%74%48
1910



63%77%51
20




60%80%53
21116


56%83%56
22




51%86%59
2312



47%88%62
24




43%90%65
251374

38%92%68
26




34%94%70
2714



29%96%73
28




24%97%76
29158


20%98%79
30




15%99%82
3116



10%100%84
32




5%100%87
3317953
0%100%90
34




–5%100%93
3518



–10%100%96
36




–15%99%98
371910


–20%98%101
38




–24%97%104
3920



–29%96%107
40




–34%94%110
4121116

–38%92%113
42




–43%90%115
4322



–47%88%118
44




–51%86%121
452312


–56%83%124
46




–60%80%127
4724



–63%77%129
48




–67%74%132
492513742–71%71%135
50




–74%67%138
5126



–77%63%141
52




–80%60%143
532714


–83%56%146
54




–86%51%149
5528



–88%47%152
56




–90%43%155
5729158

–92%38%158
58




–94%34%160
5930



–96%29%163
60




–97%24%166
613116


–98%20%169
62




–99%15%172
6332



–100%10%174
64




–100%5%177
65331795
–100%0%180
66




–100%–5%183
6734



–100%–10%186
68




–99%–15%188
693518


–98%–20%191
70




–97%–24%194
7136



–96%–29%197
72




–94%–34%200
73371910

–92%–38%203
74




–90%–43%205
7538



–88%–47%208
76




–86%–51%211
773920


–83%–56%214
78




–80%–60%217
7940



–77%–63%219
80




–74%–67%222
8141211163–71%–71%225
82




–67%–74%228
8342



–63%–77%231
84




–60%–80%233
854322


–56%–83%236
86




–51%–86%239
8744



–47%–88%242
88




–43%–90%245
89452312

–38%–92%248
90




–34%–94%250
9146



–29%–96%253
92




–24%–97%256
934724


–20%–98%259
94




–15%–99%262
9548



–10%–100%264
96




–5%–100%267
974925137
0%–100%270
98




5%–100%273
9950



10%–100%276
100




15%–99%278
1015126


20%–98%281
102




24%–97%284
10352



29%–96%287
104




34%–94%290
105532714

38%–92%293
106




43%–90%295
10754



47%–88%298
108




51%–86%301
1095528


56%–83%304
110




60%–80%307
11156



63%–77%309
112




67%–74%312
1135729158471%–71%315
114




74%–67%318
11558



77%–63%321
116




80%–60%323
1175930


83%–56%326
118




86%–51%329
11960



88%–47%332
120




90%–43%335
121613116

92%–38%338
122




94%–34%340
12362



96%–29%343
124




97%–24%346
1256332


98%–20%349
126




99%–15%352
12764



100%–10%354
128




100%–5%357

(1) The indexer enters the home state after power-up, after exiting UVLO, or after exiting sleep mode.

3.3 Current Regulation


Table 4. Fixed Off-Time Selection

TOFF_SELTOFF Duration
020 μs
Z10 μs
130 μs


The full-scale (100%) chopping current is calculated as follows:

Equation 1. eq_IFS_LLSEK2.gif

where

  • IFS Is The Full Scale Regulated Current

  • VREF Is The Voltage On The VREF Pin

  • RISENSE Is The Resistance Of The Sense Resistor

  • TORQUE Is The Scaling Percentage From The Torque DAC.

Example: Using VREF is 3.3 V, torque DAC = 100%, and a 500-mΩ sense resistor, the full-scale chopping current is 3.3 V / (6.6 × 500 mΩ) × 100% = 1 A.

The current for both motor windings is scaled depending on the I0 and I1 pins, which drive a 3-bit linear DAC, as inTable 5.

Table 5. Torque DAC Settings

I1I0CURRENT SCALING (TORQUE)
00100%
0Z87.5%
0175%
Z062.5%
ZZ50%
Z137.5%
1025%
1Z12.5%
110% (outputs disabled)

Table 6 gives the xISEN trip voltage at a given DAC code and I[1:0] setting.

Table 6. Torque DAC xISENS Trip Levels (VREF = 3.3 V)

Sine DAC CodeTorque DAC I[1:0] Setting
00 - 100%0Z - 87.5%01 - 75%Z0 - 62.5%ZZ - 50%Z1 - 37.5%10 - 25%1Z - 12.5%
31500 mV438 mV375 mV313 mV250 mV188 mV125 mV63 mV
30500 mV438 mV375 mV313 mV250 mV188 mV125 mV63 mV
29495 mV433 mV371 mV309 mV248 mV186 mV124 mV62 mV
28490 mV429 mV368 mV306 mV245 mV184 mV123 mV61 mV
27485 mV424 mV364 mV303 mV243 mV182 mV121 mV61 mV
26480 mV420 mV360 mV300 mV240 mV180 mV120 mV60 mV
25470 mV411 mV353 mV294 mV235 mV176 mV118 mV59 mV
24460 mV403 mV345 mV288 mV230 mV173 mV115 mV58 mV
23450 mV394 mV338 mV281 mV225 mV169 mV113 mV56 mV
22440 mV385 mV330 mV275 mV220 mV165 mV110 mV55 mV
21430 mV376 mV323 mV269 mV215 mV161 mV108 mV54 mV
20415 mV363 mV311 mV259 mV208 mV156 mV104 mV52 mV
19400 mV350 mV300 mV250 mV200 mV150 mV100 mV50 mV
18385 mV337 mV289 mV241 mV193 mV144 mV96 mV48 mV
17370 mV324 mV278 mV231 mV185 mV139 mV93 mV46 mV
16355 mV311 mV266 mV222 mV178 mV133 mV89 mV44 mV
15335 mV293 mV251 mV209 mV168 mV126 mV84 mV42 mV
14315 mV276 mV236 mV197 mV158 mV118 mV79 mV39 mV
13300 mV263 mV225 mV188 mV150 mV113 mV75 mV38 mV
12280 mV245 mV210 mV175 mV140 mV105 mV70 mV35 mV
11255 mV223 mV191 mV159 mV128 mV96 mV64 mV32 mV
10235 mV206 mV176 mV147 mV118 mV88 mV59 mV29 mV
9215 mV188 mV161 mV134 mV108 mV81 mV54 mV27 mV
8190 mV166 mV143 mV119 mV95 mV71 mV48 mV24 mV
7170 mV149 mV128 mV106 mV85 mV64 mV43 mV21 mV
6145 mV127 mV109 mV91 mV73 mV54 mV36 mV18 mV
5120 mV105 mV90 mV75 mV60 mV45 mV30 mV15 mV
4100 mV88 mV75 mV63 mV50 mV38 mV25 mV13 mV
375 mV66 mV56 mV47 mV38 mV28 mV19 mV9 mV
250 mV44 mV38 mV31 mV25 mV19 mV13 mV6 mV
125 mV22 mV19 mV16 mV13 mV9 mV6 mV3 mV
00 mV0 mV0 mV0 mV0 mV0 mV0 mV0 mV

3.4 Decay Mode

After the chopping current threshold is reached, the drive current is interrupted, but due to the inductive nature of the motor, current must continue to flow for some period of time (called recirculation current). To handle this recirculation current, the H-bridge can operate in two different states, fast decay or slow decay (or a mixture of fast and slow decay).


decay_mode_LLSEK2.gifFigure 7. Decay Modes

The DRV8846 supports fast, slow, mixed, and adaptive decay modes. With stepper motors, the decay mode is chosen for a given stepper motor and operating conditions to minimize mechanical noise and vibration.


current_waves_LLSEK2.gifFigure 8. Decay Behavior

Table 7. Decay Pins Configuration

DEC1DEC0Decay Mode (Increasing Current)Decay Mode (Decreasing Current)
00Slow decaySlow decay
0ZSlow decayMixed decay: 25% fast
01Slow decayMixed decay: 1 tBLANK
Z0Mixed decay: 1 tBLANKMixed decay: 1 tBLANK
ZZMixed decay: 50% fastMixed decay: 50% fast
Z1Mixed decay: 25% fastMixed decay: 25% fast
10Slow decayMixed decay: 50% fast
1ZSlow decayMixed decay: 12.5% fast
11Slow decayFast decay

Figure 9 shows increasing and decreasing current. When current is decreasing, the decay mode used is fast, slow, or mixed as commanded by the DEC1 and DEC0 pins. Three DEC pin selections allow for mixed decay during increasing current.

本文摘自中华ic网 www.1kic.com ,原文地址:http://www.1kic.com/news/knowledgeinfo/7134.html 

中华IC网是国内首家永久免费上传和推广ic库存的网站,倡导真实IC现货免费展示,汇集数万家IC供应商和代理商库存信息,每日有大量工厂终端ic求购信息,是国内首个免费的ic现货发布平台,中华ic网提供更详尽更细化的IC报价参考ic图片查询、ic代理商名录、IC求助、ic技术参数查询、ic代码查询及更人性化的IC竞价排名系统,是广大终端工厂及制造商采购ic电子元器件原材料的理想平台。

inc_and_dec_current_LLSEK2.gifFigure 9. Increasing and Decreasing Current

Adaptive decay mode simplifies the decay mode selection by dynamically changing to adjust for current level, step change, supply variation, BEMF, and load. To enable adaptive decay mode, pull the ADEC pin to logic high and pull DEC0 and DEC1 pins to logic high. The state of the ADEC pin is only evaluated when exiting sleep mode.


tim_decay_1_LLSEK2.gifFigure 10. Adaptive Decay – Slow Decay Operation


tim_decay_2_LLSEK2.gifFigure 11. Adaptive Decay – Mixed Decay Operation

Figure 12 shows a case for adaptive decay where a step occurs. The system starts with 1 tBLANK of fast decay and works up to 25% of tOFF time for fast decay until the current is regulated again.

tim_decay_3_LLSEK2.gifFigure 12. Adaptive Decay – Step