灰度共生矩阵
0赞由于纹理形式广泛多样,虽然纹理研究已经进行了几十年,但与纹理相关的很多问题尚未得到解决,如纹理的定义及对其特征的精确描述。本课题着重阐述了图像的纹理特征、灰度共生矩阵及其特点,进行了基于灰度共生矩阵的纹理特征提取实验,并采用最小距离判别函数,对图像的特征值进行分类识别。实验表明,对于具有显著纹理特征的图像,基于纹理特征的图像分类识别具有一定的准确性、可靠性和实用性。
如前所述,纹理特征是一种不依赖于颜色或亮度而反映图像中同质现象的视觉特征,它是物体表面共有的内在特性。纹理特征包含了物体表面结构组织排列的重要信息以及它们与周围环境的联系。自然景物与人造物体表现出不同的纹理特征,因此纹理特征分析成为识别人造目标的有效手段。图像的灰度共生矩阵已被理论证明并且实验显示它在纹理确定上是一个很好的方法,广泛用于将图像灰度值转化为纹理信息。本课题要求学生掌握有关图像纹理分析理论的基础上,编写程序计算图像指定区域的能量、熵和局部平稳性的计算。
灰度共生矩阵是一种用来分析图像纹理特征的重要方法,它建立在估计图像的二阶组合条件概率密度函数的基础上,通过计算图像中有一定距离和一定方向的两个像素之间的灰度相关性,对图像的所有像素进行调查统计,反应图像在方向、相邻间隔、变化幅度及快慢上的综合信息。
灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。 取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。令点(x,y)在整个画面上移动,则会得到各种(g1,g2)。值,设灰度值的级数为,则(g1,g2)。的组合共有k2种。对于整个画面,统计出每一种(g1,g2)值出现的次数,然后排列成一个方阵,在用(g1,g2)出现的总次数将它们归一化为出现的概率P(g1,g2),这样的方阵称为灰度共生矩阵。距离差分值(a,b)取不同的数值组合,可以得到不同情况下的联合概率矩阵。(a,b) 取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值。 当a=1,b=0时,像素对是水平的,即0度扫描;当a=1,b=0 时,像素对是垂直的,即90度扫描;当 a=1,b=1时,像素对是右对角线的,即45度扫描;当a=-1,b=-1时,像素对是左对角线,即135度扫描。 这样,两个象素灰度级同时发生的概率,就将(x,y)的空间坐标转化为“灰度对” (g1,g2)的描述,形成了灰度共生矩阵。实验中对灰度共生矩阵进行了如下的归一化:
