xilinli

提高LVDS接口集成度和可靠性

0
阅读(1937)

由于系统要求传输距离大于8m,需采用平衡电缆。对于两端LVDS接口,可以采用 ASIC和FPGA两种方式实现。由于Xilinx公司生产的Virtex-II系列FPGA直接支持LVDS电平标准,本系统采用XC2V250实现, 这不仅省去了专用LVDS电平转换芯片,节省了成本,而且可以将系统中其它控制逻辑集成在单个FPGA芯片内,从而降低了PCB设计的难度,提高了系统的 集成度和可靠性。另外,收发接口逻辑采用FPGA,可以在使用过程中根据需要重新配置传输方向,以动态地改变收发通道的数目,大大增强了系统的可重构能 力。

整个数据传输系统框图如图1所示。由于数据传输是双向的,信号处理板和PCI板都有并/串转换发送模块和串/并转换接收模块 (均在FPGA内实现),两块板卡通过平衡电缆连接。此外,在信号处理板上,DSP处理机通过外部总线向 FPGA发送缓存区内写入数据,FPGA通过DSP的主机口完成与DSP存储空间的数据交换。在PCI板上,FPGA通过PCI控制器和主机进行数据交 换。系统工作原理可表述如下:DSP处理机将处理结果通过外部总线输出到FPGA缓冲存储器内,在FPGA内完成数据的并/串转换,并通过LVDS串行接 口发送出去。数据通过平衡电缆传输至上位机接收卡。在上位机接收卡内,数据经串/并转换后,送至PCI接口控制电路。上位机输出数据到DSP处理板的过程 则相反。由于系统要求数据传输上行数据率小于下行数据率,设计中上行数据传输通道数为1,下行数据通道数是4。在传输距离大于8m的情况下,实际单通道数 据传输速率达到264Mbps。

LVDS信号的拓扑可以是点到点单向,点到点双向或总线型 (multi―drop)。无论哪种应用,都需要在接收端进行端接匹配。匹配阻抗值等于差分阻抗,典型值为100。匹配电阻在这里主要起到吸收负载反射信 号的作用,因此,要求距离接收端尽量靠近。在本系统中,利用FPGA片内的数控阻抗(Digitally ControlLED Impedance),直接配置FPGA内部端接阻抗值,在FPGA内部实现端接匹配。这样做不仅可以方便修改端接阻抗值大小,使端接电阻很好地匹配,而 且端接电阻与接收端非常靠近。

差分信号的布线是整个传输电路设计的难点。一般来说,按照阻抗设计规则进行差分信号布线,就可以确保LVDS信号质量。在实际布线当中,LVDS差 分信号布线应遵循以下原则:

1、差分对应该尽可能地短、走直线、减少布线中的过孔数,差分对内的信号线间距必须保持一致,避免差 分对布线太长,出现太多的拐弯。

2、差分对与差分对之间应该保证10倍以上的差分对间距,减少线间串扰。必要时,在差分对之间放 置隔离用的接地过孔。

3、LVDS差分信号不可以跨平面分割。尽管两根差分信号互为回流路径,跨分割不会割断信号的回流,但因为 缺少参考平面而导致阻抗的不连续。

4、尽量避免使用层间差分信号。在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大 低于同层蚀刻精度,以及层压过程中的介质流失,层间差分信号不能保证差分线之间间距等于介质厚度,因此会造成层间差分对的差分阻抗变化。因此建议尽量使用 同层内的差分。

5.在设计阻抗时,尽量设计成紧耦合方式,即差分对线间距小于或等于线宽。

增加阅读:

1.嵌入式控制在微波设备控制上的实现:
大型系统我们一般采用工业PC的方式集中控制,但面对小型系统我们如采用工业PC的方法则有点大 马拉小车的概念了。一方面,对于向小系统应用必须考虑成本,另一方面的要求是稳定与可靠。因而,采用嵌入式计算机是我们的首选。
对于嵌入式控制 系统有两个种类:
一、基于无操作系统的嵌入式芯片的控制技术。
二、基于有操作系统的嵌入式芯片的控制技术。
第一种我们一般 性的可将之认为是在微控制器的层面上,我国一般称为单片机。它一般用于对处理数据要求相对较低的场合,设计者一般采用汇编语言对其进行开发,此种控制不具 有良好的人机界面。
第二种实际就是一台PC,但要比一般PC及工业计算机都来得稳定,这一稳定性促使嵌入式计算机的应用领域十分宽广。以目前的 发展速度,今后的工业控制方面大有取代工业控制计算机的趋势。它所用的操作系统一般为:Linux、MS-dos、Windows CE等。WinCE是微软公司基于NT控制技术的基础上开发产生的操作系统,被广泛应用于Pocket PC 以及一些嵌入式计算机中。这里特别要一提的是Windows CE.net,它的 
出现使原来在PC上开发的程序员能最小缝隙的过渡到面向嵌入 式系统进行开发,同时具有.net的框架。对于设备控制系统我们一般选择此系统。
这里一般单台次的工业控制基本采用Windows CE+组态软件+触摸屏的形式来实现。这里的组态软件与上面的组态软件本质和功能基本是一样的,所不同的是支持它运行的平台为Windows CE操作系统。目前我国的一些组态软件厂家都看到了这一巨大的市场,因而纷纷推出自己基于CE系统的组态软件,如昆仑通态的MCGS等。
当然, 在针对相对简单或用户要求不高的系统的时候,也可以使用WinCE平台下的开发软件自己进行相关编程,其开发软件一般使用Microsoft的 eMbedded Visual basic 和 eMbedded Visual C++等。其具体控制方式可参见“自动控制技术在微波工业设备中的应用”内的相关介绍。
2.在工业控制领域经常应用的若干控制算法
在 使用嵌入式计算机进行工业自动化控制过程中,有一些相关的算法是较为常用的,作为工程开发设计人员必须通晓相关的控制算法,这样有助于实现可靠使用的控 制。
1. 常规PID控制算法
PID算法是工业控制中最常用的一种数学算法,它的基本公式如下:
直接计算公式:
Pout(t)=KP*e(t)+Ki*∑e(t)+Kd*(e(t)-e(t-1));
上一次的计算:
Pout(t-1)=Kp*e(t-1)+Ki*∑e(t)+Kd*(e(t-1)-e(t-2));
两式 相减得到增量法计算公式:
Pdlt=Kp*(e(t)+Ki*∑e(t)+Kd*(e(t)-2*e(t-1)+e(t-2));
其 中三个基本参数Kp、Ki、Kd在实际控制中的作用:
Kp-比例调节作用:是按比例反映系统的偏差,系统一旦出现偏差,比例调节立即产生调节作 用用以减少误差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

推荐阅读: