【原创】CORDIC算法的FPGA实现
0赞
发表于 3/17/2015 2:15:24 AM
阅读(9120)
忙了几天的毕业设计,做了256~16M点FFT窗函数的设计。今晚终于可以写下博客了,嘻嘻。在这次的设计中用到了CORDIC算法,接下来开始举一个简单的例子来说明该算法的FPGA实现。根据上一篇博客的CORDIC算法理论基础,本次设计以圆周系统的旋转模式为依据和迭代法为实现方案。为了方便说明该设计,相位输入位宽为8,迭代次数为8。
(1)由上一篇博客可知,为了让复杂的三角函数转换成简单的移位相加,得对θi进行一定的限制,使tanθi=2-i,即θi=tan-12-i(i=0,1,2...)。这样,我们可以算出每次迭代所对应的旋转角度了。为了快速算出这些旋转角度,我们得寻找一种方便易用、计算能力强大的软件来完成,C、C++等随你选。这里以MATLAB为例:
fid = fopen('rot.txt','w'); for i=0:7 x = atan(2^(-i))/pi*2^7; rot_angle = atan(2^(-i))*180/pi; y = dec2bin(x,8); fprintf(fid,'parameter Rot%d = 8''b',i+1); fwrite(fid,y); fprintf(fid,';\t//%8.5fdeg\r\n',rot_angle); end fclose(fid)
运行后,产生rot.txt文件,打开后会发现该文件已经包含了本设计中需要的旋转角度:
(2)由于每次旋转都会使向量模长增大1/cosθi倍,n次旋转后模长将增大
1/cosθ0*1/cosθ1*...*1/cosθn-1。为了纠正向量模长,最后得乘以因子
cosθ0*cosθ1*...*cosθn-1。该值的计算也交给MATLAB了。
Init_1 = 1; fid = fopen('Init.txt','w'); for i = 0:7 cos_data = cos(atan(2^(-i))); Init_1 = Init_1*cos_data; end Init_expand = Init_1*2^7; Init_data = dec2bin(Init_expand,8); fprintf(fid,'parameter Init = 8''b'); fwrite(fid,Init_data); fprintf(fid,'; //%7.5f*2^%d 8次迭代:%7.5f',Init_1,i,Init_1); fclose(fid)
运行后,产生Init.txt文件,内容如下:
(3)有了上面的参数,以及下面的迭代公式和初始值就可以开始设计我们的代码了。
其中di为:
其Verilog HDL设计代码如下:
`timescale 1ns / 1ps /******************************************************* Author : CrazyBird Filename : cordic.v Data : 2015-3-17 Description : cordic ********************************************************/ module cordic #( parameter DATA_WIDTH = 8 ) ( input clk, input rst_n, input [DATA_WIDTH-1:0] phase_in, output reg [DATA_WIDTH-1:0] sin_out, output reg [DATA_WIDTH-1:0] cos_out ); //------------------------------------------------ //定义旋转角度 parameter Rot1 = 8'b00100000; //45.00000deg parameter Rot2 = 8'b00010010; //26.56505deg parameter Rot3 = 8'b00001001; //14.03624deg parameter Rot4 = 8'b00000101; // 7.12502deg parameter Rot5 = 8'b00000010; // 3.57633deg parameter Rot6 = 8'b00000001; // 1.78991deg parameter Rot7 = 8'b00000000; // 0.89517deg //parameter Rot8 = 8'b00000000; // 0.44761deg parameter Init = 8'b01001101; // 0.60726*2^7 8次迭代:0.60726 //------------------------------------------------ //定义迭代级数 reg [DATA_WIDTH-1:0] x0 ,y0 ,z0 ; reg [DATA_WIDTH-1:0] x1 ,y1 ,z1 ; reg [DATA_WIDTH-1:0] x2 ,y2 ,z2 ; reg [DATA_WIDTH-1:0] x3 ,y3 ,z3 ; reg [DATA_WIDTH-1:0] x4 ,y4 ,z4 ; reg [DATA_WIDTH-1:0] x5 ,y5 ,z5 ; reg [DATA_WIDTH-1:0] x6 ,y6 ,z6 ; reg [DATA_WIDTH-1:0] x7 ,y7 ,z7 ; reg [DATA_WIDTH-1:0] x8 ,y8 ,z8 ; //------------------------------------------------ //限定区间 reg [DATA_WIDTH-1:0] phase_in_reg; always @(posedge clk or negedge rst_n) begin if(!rst_n) phase_in_reg <= 8'h0; else begin case(phase_in[7:6]) 2'b00 : phase_in_reg <= phase_in; 2'b01 : phase_in_reg <= phase_in - 8'h40; 2'b10 : phase_in_reg <= phase_in - 8'h80; 2'b11 : phase_in_reg <= phase_in - 8'hc0; endcase end end //------------------------------------------------ //初始值 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x0 <= 8'h00; y0 <= 8'h00; z0 <= 8'h00; end else begin x0 <= Init; y0 <= 8'h00; z0 <= phase_in_reg; end end //------------------------------------------------ //第一级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x1 <= 8'h00; y1 <= 8'h00; z1 <= 8'h00; end else begin if(z0[7]==1'b0) begin x1 <= x0 - y0; y1 <= y0 + x0; z1 <= z0 - Rot1; end else begin x1 <= x0 + y0; y1 <= y0 - x0; z1 <= z0 + Rot1; end end end //------------------------------------------------ //第二级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x2 <= 8'h00; y2 <= 8'h00; z2 <= 8'h00; end else begin if(z1[7]==1'b0) begin x2 <= x1 - {y1[DATA_WIDTH-1],y1[DATA_WIDTH-1:1]}; y2 <= y1 + {x1[DATA_WIDTH-1],x1[DATA_WIDTH-1:1]}; z2 <= z1 - Rot2; end else begin x2 <= x1 + {y1[DATA_WIDTH-1],y1[DATA_WIDTH-1:1]}; y2 <= y1 - {x1[DATA_WIDTH-1],x1[DATA_WIDTH-1:1]}; z2 <= z1 + Rot2; end end end //------------------------------------------------ //第三级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x3 <= 8'h00; y3 <= 8'h00; z3 <= 8'h00; end else begin if(z2[7]==1'b0) begin x3 <= x2 - {{2{y2[DATA_WIDTH-1]}},y2[DATA_WIDTH-1:2]}; y3 <= y2 + {{2{x2[DATA_WIDTH-1]}},x2[DATA_WIDTH-1:2]}; z3 <= z2 - Rot3; end else begin x3 <= x2 + {{2{y2[DATA_WIDTH-1]}},y2[DATA_WIDTH-1:2]}; y3 <= y2 - {{2{x2[DATA_WIDTH-1]}},x2[DATA_WIDTH-1:2]}; z3 <= z2 + Rot3; end end end //------------------------------------------------ //第四级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x4 <= 8'h00000000; y4 <= 8'h00000000; z4 <= 8'h00000000; end else begin if(z3[7]==1'b0) begin x4 <= x3 - {{3{y3[DATA_WIDTH-1]}},y3[DATA_WIDTH-1:3]}; y4 <= y3 + {{3{x3[DATA_WIDTH-1]}},x3[DATA_WIDTH-1:3]}; z4 <= z3 - Rot4; end else begin x4 <= x3 + {{3{y3[DATA_WIDTH-1]}},y3[DATA_WIDTH-1:3]}; y4 <= y3 - {{3{x3[DATA_WIDTH-1]}},x3[DATA_WIDTH-1:3]}; z4 <= z3 + Rot4; end end end //------------------------------------------------ //第五级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x5 <= 8'h00; y5 <= 8'h00; z5 <= 8'h00; end else begin if(z4[7]==1'b0) begin x5 <= x4 - {{4{y4[DATA_WIDTH-1]}},y4[DATA_WIDTH-1:4]}; y5 <= y4 + {{4{x4[DATA_WIDTH-1]}},x4[DATA_WIDTH-1:4]}; z5 <= z4 - Rot5; end else begin x5 <= x4 + {{4{y4[DATA_WIDTH-1]}},y4[DATA_WIDTH-1:4]}; y5 <= y4 - {{4{x4[DATA_WIDTH-1]}},x4[DATA_WIDTH-1:4]}; z5 <= z4 + Rot5; end end end //------------------------------------------------ //第六级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x6 <= 8'h00; y6 <= 8'h00; z6 <= 8'h00; end else begin if(z5[7]==1'b0) begin x6 <= x5 - {{5{y5[DATA_WIDTH-1]}},y5[DATA_WIDTH-1:5]}; y6 <= y5 + {{5{x5[DATA_WIDTH-1]}},x5[DATA_WIDTH-1:5]}; z6 <= z5 - Rot6; end else begin x6 <= x5 + {{5{y5[DATA_WIDTH-1]}},y5[DATA_WIDTH-1:5]}; y6 <= y5 - {{5{x5[DATA_WIDTH-1]}},x5[DATA_WIDTH-1:5]}; z6 <= z5 + Rot6; end end end //------------------------------------------------ //第七级迭代 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin x7 <= 8'h00; y7 <= 8'h00; z7 <= 8'h00; end else begin if(z6[7]==1'b0) begin x7 <= x6 - {{6{y6[DATA_WIDTH-1]}},y6[DATA_WIDTH-1:6]}; y7 <= y6 + {{6{x6[DATA_WIDTH-1]}},x6[DATA_WIDTH-1:6]}; z7 <= z6 - Rot7; end else begin x7 <= x6 + {{6{y6[DATA_WIDTH-1]}},y6[DATA_WIDTH-1:6]}; y7 <= y6 - {{6{x6[DATA_WIDTH-1]}},x6[DATA_WIDTH-1:6]}; z7 <= z6 + Rot7; end end end //------------------------------------------------ //第八级迭代 //always @(posedge clk or negedge rst_n) //begin // if(!rst_n) // begin // x8 <= 8'h00; // y8 <= 8'h00; // z8 <= 8'h00; // end // else // begin // if(z7[7]==1'b0) // begin // x8 <= x7 - {{7{y7[DATA_WIDTH-1]}},y7[DATA_WIDTH-1:7]}; // y8 <= y7 + {{7{x7[DATA_WIDTH-1]}},x7[DATA_WIDTH-1:7]}; // z8 <= z7 - Rot8; // end // else // begin // x8 <= x7 + {{7{y7[DATA_WIDTH-1]}},y7[DATA_WIDTH-1:7]}; // y8 <= y7 - {{7{x7[DATA_WIDTH-1]}},x7[DATA_WIDTH-1:7]}; // z8 <= z7 + Rot8; // end // end //end //------------------------------------------------ //对界定象限的位进行缓存,为后面的输出正余弦值做区间判断 reg [1:0] phase_in_buf [9:0]; always @(posedge clk or negedge rst_n) begin if(!rst_n) begin phase_in_buf[0] <= 2'b0; phase_in_buf[1] <= 2'b0; phase_in_buf[2] <= 2'b0; phase_in_buf[3] <= 2'b0; phase_in_buf[4] <= 2'b0; phase_in_buf[5] <= 2'b0; phase_in_buf[6] <= 2'b0; phase_in_buf[7] <= 2'b0; phase_in_buf[8] <= 2'b0; phase_in_buf[9] <= 2'b0; end else begin phase_in_buf[0] <= phase_in[7:6]; phase_in_buf[1] <= phase_in_buf[0]; phase_in_buf[2] <= phase_in_buf[1]; phase_in_buf[3] <= phase_in_buf[2]; phase_in_buf[4] <= phase_in_buf[3]; phase_in_buf[5] <= phase_in_buf[4]; phase_in_buf[6] <= phase_in_buf[5]; phase_in_buf[7] <= phase_in_buf[6]; phase_in_buf[8] <= phase_in_buf[7]; phase_in_buf[9] <= phase_in_buf[8]; end end //------------------------------------------------ //输出正、余弦值 always @ (posedge clk,negedge rst_n) begin if(!rst_n) begin sin_out <= 8'b0; cos_out <= 8'b0; end else begin case(phase_in_buf[8]) 2'b00: begin sin_out <= y7; cos_out <= x7; end 2'b01: begin sin_out <= x7; cos_out <= ~(y7)+1'b1; end 2'b10: begin sin_out <= ~(y7)+1'b1; cos_out <= ~(x7)+1'b1; end 2'b11: begin sin_out <= ~(x7)+1'b1; cos_out <= y7; end endcase end end endmodule
其测试代码:
`timescale 1ns / 1ps /******************************************************* Author : CrazyBird Filename : cordic_tb.v Data : 2015-3-17 Description : test of cordic module ********************************************************/ module cordic_tb; reg clk; reg rst_n; reg [7:0] phase_in; wire [7:0] sin_out; wire [7:0] cos_out; cordic u_cordic ( .clk (clk ), .rst_n (rst_n ), .phase_in (phase_in ), .sin_out (sin_out ), .cos_out (cos_out ) ); parameter PERIOD = 10; initial begin clk = 0; forever #(PERIOD/2) clk = ~clk; end initial begin rst_n = 0; repeat(2)@(negedge clk); rst_n = 1; end always @(posedge clk or negedge rst_n) begin if(!rst_n) phase_in <= 8'b0; else phase_in <= phase_in + 1'b1; end endmodule
(4)测试结果
由仿真结果可以知道功能基本实现,但精度不够高。为了提高精度,可以增加输出相位的位宽和迭代次数。
好,总算讲完了。该睡了,晚安*^_^*